Hunslet Moor Primary School

Calculation Policy

Reviewed by Subject Leader July 2023
Due to be reviewed by July 2024

Addition Language

Year 1	t, add, more, plus, make, sum, total, altogether, score, double, near double, one more, two more... ten more. How many more to make...? How many more is... than...? How much more is...? $\quad=$, equals, sign, is the same as...
Year 2	+, add, more, plus, make, sum, total, altogether, tens, ones, double, near double, one more, two more.. ten more. How many more to make...? How many more is... than...? How much more is...? $\quad=$, equals, sign, is the same as...
Year 3	+, add, addition, more, plus, make, sum, total, altogether, double, near double, one more, two more... ten more... one hundred more, How many more to make...?, How many more is... than...? How much more is...? Hundreds, Tens, Ones
Year 4	Add, addition, more, plus, increase, sum, total, altogether, double, near double How many more to make...? Equals, sign, is the same as, tens boundary, hundreds boundary Inverse, Thousands, Hundreds, Tens, Ones
Year 5 \& 6	Add, addition, more, plus, increase, sum, total, altogether, double, near double How many more to make...? Equals, sign, is the same as, tens boundary, hundreds boundary Inverse, Millions, Thousands, Hundreds, Tens, Ones

Maths Calculation Policy 2023-2024

Maths Calculation Policy 2023-2024

Objective \& Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in \square 1 a bar.	$4+3=7$ $10=6+4$ Use the part-part whole diagram as shown above to move into the abstract.
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10. This is an essential skill for column addition later.	$6+5=11$ Start with the bigger number and use the smaller number to make 10. Use ten frames.	$3+9=$ Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. $9+5=14$ 14 4	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?
Represent \& use number bonds and related subtraction facts within 20	2 more than 5 .		Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7. ' ' 8 is 3 more than 5.'

Maths Calculation Policy 2023-2024

Objective \& Strategy	Concrete	Pictorial	Abstract	Year
Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	Use part part whole and number line to model.	$17+5=22$ Explore related facts $17+5=22$ $5+17=22$ $22-17=5$ $22-5=17$	2
Add a 2 digit number and tens	$25+10=35$ Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$	
Add two 2-digit numbers	HAPA Model using dienes, place value counters and numicon	 Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$	
Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation. $+\int^{2}=15$	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/ bridge ten then add on the third.	

Maths Calculation Policy 2023-2024

Objective \& Strategy	Concrete	Pictorial	Abstract
Column Addition-no regrouping (friendly numbers) Add two or three 2 or 3digit numbers.	 Model using Dienes or numicon Add together the ones first, then the tens. Move to using place value counters	Children move to drawing the counters using a tens and one frame.	$\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$ Add the ones first, then the tens, then the hundreds.
Column Addition with regrouping.	Exchange ten ones for a ten. Model using numicon and pv counters.	 Children can draw a representation of the grid to further support their understanding, carrying the ten underneath the line	

Maths Calculation Policy 2023-2024

Subtraction Language

Year 1	-, subtract, take (away), minus, how many are left/left over? How many have gone? One less, two less, ten less...how many fewer is... than...? How much less is...? Difference between, half, halve $=$, equals, sign, is the same as, is of equal value to.
Year 2	Subtract, subtraction, take (away), minus, How many are left/left over? One less, two less... ten less... one hundred less, how many fewer is... than...? How
Year 3	Subtract, subtraction, take (away), minus, how many are left/left over? One less, two less... ten less... one hundred less, how many fewer is... than...? How much less is...? Difference between, half, halve, equals, sign, is the same as, exchange, trade, hundreds, ones, tens.

Maths Calculation Policy 2023-2024
Year 4, 5 \& 6
Subtract, subtraction, take (away), minus, decrease, inverse, how many are left/left over? One less, two less... ten less... one hundred less, how many fewer is... than...? How much less is...? Difference between, half, halve, equals, sign, is the same as, exchange, trade, thousands, hundreds, ones, tens, decimal.

Maths Calculation Policy 2023-2024

Objective \& Strategy	Concrete	Pictorial	Abstract
Taking away ones.	Use physical objects, counters, cubes etc to show how objects can be taken away.	$15-3=12$ Cross out drawn objects to show what has been taken away.	$7-4=3$ $16-9=7$
Counting back	-1 ${ }^{2}$ Move objects away from the group, counting backwards. Move the beads along the bead string as you count backwards.	Count back in ones using a number line.	Put 13 in your head, count back 4 . What number are you at?
Find the Difference	Compare objects and amounts	Count on using a number line to find the difference.	Hannah has 12 sweets and her sister has 5. How many more does Hannah have than her sister.?

Maths Calculation Policy 2023-2024

Objective \& Strategy	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20 Part Part Whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what s the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model.
Make 10	Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5.	Jump back 3 first, then another 4 . Use ten as the stopping point.	$16-8$ How many do we take off first to get to 10 ? How many left to take off?
Bar model	$5-2=3$		8 2$\begin{aligned} & 10=8+2 \\ & 10=2+8 \\ & 10-2=8 \\ & 10-8=2 \end{aligned}$

Maths Calculation Policy 2023-2024

Objective \& Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$\begin{aligned} & \sum_{3,3}^{3} \quad 3 \text { 33 } \\ & 20-4= \end{aligned}$	$20-4=16$
Partitioning to subtract without regrouping. 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes and cross off. $43-21=22$	$43-21=22$
Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to next ten and then the rest.	$93-76=17$

 Strategy	Concrete	Pictorial	Abstract
Column subtraction without regrouping (friendly numbers)	Use base 10 or Numicon to model		$\begin{gathered} 47-24=23 \\ -20+7 \\ -\frac{20+4}{20+3} \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.
Column subtraction with regrouping	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into tten ones. Use the phrase 'take and make' for exchange.	45 $\frac{-29}{16} \frac{\text { Tens } 10 \text { nes }}{\text { 17TH A880 }}$ $\begin{aligned} & \square a_{0}=16 \\ & a 0 \\ & 10+6=16 \end{aligned}$ Children may draw base ten or PV counters and cross off.	Begin by partitioning into pv columns $\begin{gathered} 728-582=146 \\ { }^{\prime \prime} \\ { }^{\prime} 7 \\ \hline \end{gathered}$ Then move to formal method.

Maths Calculation Policy 2023-2024

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money	$234-179$ Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw pv counters and show their exchange-see Y3	Use the phrase 'take and make' for exchange
Year 5-Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	As Year 4	Children to draw pv counters and show their exchange-see Y3	$\begin{array}{r} { }^{2} 8^{\prime \prime} x^{\prime} 0{ }^{\circ} 86 \\ -\quad 2128 \\ \hline 28,928 \end{array}$ Use zeros for placeholders.
Year 6-Subtract with increasingly large and more complex numbers and decimal values.			

Multiplication Language

Year 1	double, groups of, near double, equals, sign, is the same as
Year 2	lots of, groups of, x times, multiply, multiplied by, multiple of, once, twice, three times... ten times..., times as (big, long, wide... and so on), repeated addition, array, row, column, double.
Year 3	lots of, groups of, x, times, multiply, multiplication, multiplied by, multiple of, product, once, twice, three times... ten times..., times as (big, long, wide... and so on), repeated addition, array, row, column, double,
Year 4 \& 5	lots of, groups of, times, multiply, multiplication, multiplied by, multiple of, product, once, twice, three times... ten times..., times as (big, long, wide... and so on), repeated addition, array, row, column, double, factor, quotient, divisible by, inverse
Year 6	Halve, share, share equally, one each, two each, three each..., group in pairs, threes... tens, equal groups of, divide, division, divided by, divided into, remainder, factor, quotient, divisible by, inverse

Maths Calculation Policy 2023-2024

Objective \& Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8	Partition a number and then double each part before recombining it back together.
Counting in multiples	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$
Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw to show $2 \times 3=6$ Draw and make representations	$2 \times 4=8$

 Strategy	Concrete		Pictorial	Abstract
Repeated addition				
		Use pictorial including number lines to solve prob There are 3 sweets in one bag. How many sweets are in 5 bags altogether?	Write addition sentences to describe objects and pictures.	

Maths Calculation Policy 2023-2024

Objective \& Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers	Partition a number and th each part before recombil together.
Counting in multiples of $2,3,4,5,10$ from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models.$5+5+5+5+5+5+5+5=40$111 111 111 111 $?$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples. 3 3 3 3	Count in multiples of a nu Write sequences with mu numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$

Maths Calculation Policy 2023-2024

\begin{tabular}{|c|c|c|c|}
\hline Objective \& Strategy \& Concrete \& Pictorial \& Abstract \\
\hline Multiplication is commutative \& \begin{tabular}{l}
Create arrays using counters and cubes and \\
Numicon. \\
Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.
\end{tabular} \& Use representations of arrays to show different calculations and explore commutativity. \& \[
\begin{aligned}
\& 12=3 \times 4 \\
\& 12=4 \times 3
\end{aligned}
\]
\begin{tabular}{l}
Use an array to write \\
multiplication sentences and \\
reinforce repeated addition.
\end{tabular}

$5+5+5=15$
$3+3+3+3+3=15$
$5 \times 3=15$
$3 \times 5=15$

\hline | Using the Inverse |
| :--- |
| This should be taught alongside division, so pupils learn how they work alongside each other. | \& \& \& | $\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ |
| :--- |
| Show all 8 related fact family sentences. |

\hline
\end{tabular}

Maths Calculation Policy 2023-2024

 Strategy	Concrete	Pictorial	Abstract
Grid method	Show the links with arrays to first introduce the grid method. 4 rows of 10 4 rows of 3 Move onto base ten to move towards a more compact method. 4 rows of 13 Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows Fill each row with 126 Add up each column, starting with the ones making any exchanges needed Then you have your answer.	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below. Bar model are used to explore missing numbers $4 x$ \square $=20$	Start with multiplying by one di bers and showing the clear add alongside the grid. $210+35=245$ Moving forward, multiply by a 2 , showing the different rows withi method.

Maths Calculation Policy 2023-2024

Objective \& Strategy	Concrete	Pictorial	Abstract
Grid method recap from year 3 for 2 digits $\times 1$ digit Move to multiplying 3 digit numbers by 1 digit. (year 4 expectation)	Use place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows Fill each row with 126 Add up each colt ies making any exchanges needed	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.	Start with multiplying by one d bers and showing the clear adc alongside the grid.
Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$ It is important at this stage that they always multiply the ones first. The corresponding long multiplication is modelled alongside	x 300 20 7 4 1200 80 28 The grid method my be used to show how this relates to a formal written method. Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	

Maths Calculation Policy 2023-2024

Objective \& Strategy	Concrete	Pictorial	Abstract
Multiplying decimals up to 2 decimal places by a single digit.			Remind children that the singli in the units column. Line up the points in the question and the :
			$\begin{array}{r} 231 \\ 1342 \\ \times \quad 18 \end{array}$
			13420
			10736
			24156

Division Language

Year 1	Halve, share equally, one each, two each, three each...group in pairs, threes... tens equal groups of, \div, divide, divided by, divided into, left, left over, how many groups of
Year 2	Halve, share equally, one each, two each, three each...group in pairs, threes... tens equal groups of, \div, divide, divided by, divided into, left, left over, how many groups of
Year 3	Halve, group, group equally, one each, two each, three each..., group in pairs, threes... tens, equal groups of, \div divide, division, divided by, divided into, left, left over, remainder
Year 4	Halve, group, group equally, one each, two each, three each..., group in pairs, threes... tens equal groups of, divide, division, divided by, divided into, remainder, factor, quotient, divisible by inverse
Year 5 \& 6	Halve, group, group equally, one each, two each, three each..., group in pairs, threes... tens equal groups of, divide, division, divided by, divided into, remainder, short division, factor, quotient, divisible by, inverse

Maths Calculation Policy 2023-2024

Maths Calculation Policy 2023-2024

Objective \& Strategy	Concrete	Pictorial	Abstract
Division as sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. Children use bar modelling to show and support understanding. $12 \div 4=3$	$12 \div 3=4$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use number lines for grouping $12 \div 3=4$ ber of groups you are dividing by and work out how many would be within each group. 20 \square $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

Maths Calculation Policy 2023-2024

Objective \& Strategy	Concrete	Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ $96 \div 3=32$	Continue to use bar modelling to aid solving division problems. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in 24 ? $24 \div 6=4$
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \operatorname{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$ $28=7 \times 4$ $28=4 \times 7$ $4=28 \div 7$ $7=28 \div 4$

Maths Calculation Policy 2023-2024

Maths Calculation Policy 2023-2024

Objective \& Strategy	Concrete	Pictorial	Abstract
Divide at least 3 digit numbers by 1 digit. Short Division	 Use place value counters to divide using the bus stop method alongside $42 \div 3=$ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14 .	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder. $$ Finally move into decimal places to divide the total accurately. $\frac{0663}{8 \longdiv { 5 ^ { 5 } 3 ^ { 5 } 0 ^ { 2 } 9 }}$

Long Division

Step 1-a remainder in the ones

> | h to |
| :---: |
| 041 R 1 |
| $4 \longdiv { 1 6 5 }$ |

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times
4 goes into 5 once, leaving a remainder of 1

8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$
8 goes into 32 four times $(3,200 \div 8=400)$
8 goes into 0 zero times (tens).
8 goes into 7 zero times, and leaves a remainder of 7

Recognise, find and name a half as one of two equal parts of an object, shape or quantity.

Year
1

Concrete
four equal parts of an object, shape or quantity.

Pictorial

A whole apple

Half an apple

Abstract

Concrete

Pictorial

Abstract

Recognise, find and name and write fractions $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity.

Count up and down in tenths: recognise that tenths arise from dividing an object into ten equal parts and in dividing one-digit numbers or quantities by ten.

Concrete

Pictorial

Abstrac \dagger

$\frac{1}{5}$ of 15 sweets $=3$
_ecause $15 \div 5=3$

2 of 15 sweets $=6$
becal $\overline{5} \quad 15 \div 5=3$ and $3 \times 2=6$

Recognise and show, using diagrams, equivalent fractions with small denominators.

Abstrac \dagger

Sam says that two quarters is the same as one half.

Is he correct?

How do you know?

and
tract fractions with the same denominator.

Concrete

and order unit fractions the same denominators.

Pictorial

Abstract

$\frac{1}{5}+$

$$
\begin{aligned}
& \frac{5}{7}+\frac{1}{7}=\frac{6}{7} \\
& \frac{5}{8}-\frac{2}{8}=\frac{3}{8} \text { pare }
\end{aligned}
$$

Abstract

| $\frac{2}{8}$ |
| :--- |$\frac{5}{8} \frac{7}{8}$

Count up and down in hundredths: recognise that hundredths arise when dividing an obje and dividing tenths by 10 .

Concrete

Pictorial

Concrete

Pictorial

Abstrac

Abstrac

$$
\begin{aligned}
& \frac{1}{2}=0.5 \\
& \frac{1}{4}=0.2 \\
& \frac{3}{4}=0.7
\end{aligned}
$$

Year
4

Maths Calculation Policy 2023-2024

Concrete

Rec- $\frac{1}{10}$ of the chocolate bar $=0.1$

Pictorial

0.6
ognise grams, families of common equivalents.

Abstrac \dagger

$$
\begin{gathered}
\frac{1}{10}=0.1 \\
\frac{3}{10}=0.3 \\
\frac{5}{10}=\frac{1}{2}=0.5 \\
\frac{8}{100}=0.08
\end{gathered}
$$

Yea
r

Abstract

$$
\begin{aligned}
& \frac{2}{3}=\frac{4}{6} \\
& \frac{3}{5}=\frac{6}{10} \\
& \frac{2}{12}=\frac{1}{6}
\end{aligned}
$$

Pictorial

Abstract

Sam eats $\underline{2}$ of a whole pizza. How much 7 oes he have left?

Lucy and Ben both eat of a cake. How much have they eat $\frac{3}{8}$ altogether?

Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number.

Concrete

and
11 1 Solve simmoney problems involving fractions and decimals to

Abstract

$£ 18 \div 3=£ 6$
£6 $\times 2=£ 12$
ure two

Concrete

Pictorial

Abstract

$100 \mathrm{~cm}=1 \mathrm{~m}$
$50 \mathrm{~cm}=\frac{1}{2}=0.5 \mathrm{~m}$
$25 \mathrm{~cm}=\frac{1}{4}=0.25 \mathrm{~m}$
$10 \mathrm{~cm}=\frac{1}{10}=0.1 \mathrm{~m}$
$30 \mathrm{~cm}=\frac{3}{10}=0.3 \mathrm{~m}$

Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths.

Concrete
 same number.

Recognise mixed numbers and improper fractions. Convert from one form to the other and write mathematical statements >1 as a mixed number.

Concrete Pictorial

subtract fractions with the same denominators

Abstract

$$
\frac{7}{2}=3 \frac{1}{2}
$$

because $7 \div 2=3$ with 1 half left over
$2 \frac{1}{3}=\frac{7}{3}$
because $2 \times 3=6$ with 1 third left to add

Pictorial
Abstract

Concrete
 Concrete

$\frac{8}{20}+\frac{5}{20}=\frac{13}{20}$
$\frac{2}{5}+\frac{1}{4}=\frac{13}{20}$ and denominators that are multiples of the same numbers.
$\frac{2}{5}-\frac{1}{4}$

$\times 4$

$\frac{8}{20}-\frac{5}{20} \quad=$
So,

Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagr

Recognise and use $4 \frac{2}{4}$ altogether thousandths and relate $\frac{18}{4}=4 \frac{2}{4}+t$
decimal equivalents.
to 6 lots of $\frac{3}{4}$ tenths, hundredths and

Concrete

Abstract \dagger

 67.153 How many thousandths does this nur have? How many more thousandths d need to add to make 67.16?bol and understand the meaning: write \% as a fraction, decimal and percentage.

Pictorial

$$
\begin{gathered}
\text { Abstract } \\
\frac{4}{10}=40 \%=0.4 \\
\frac{32}{100}=32 \%=0.32 \\
\frac{75}{100}=75 \%=0.75 \\
\frac{2}{25}=\frac{8}{100}=8 \%=0.08
\end{gathered}
$$

Add and subtract fractions with different denominators and mixed numbers using the concept of equivalent fractions.

Abstract

$$
1 \frac{1}{2}+\frac{1}{3}=1 \frac{5}{6}
$$

because $1 \frac{1}{2}=\frac{3}{2}$

$$
\frac{3}{2}=\frac{9}{6} \text { and } \frac{1}{3}=\frac{2}{6}
$$

$$
\text { so } \frac{9}{6}+\frac{2}{6}=\frac{11}{6}=1 \frac{5}{6}
$$

Concrete
Pictorial
Abstract

Which is greater?

$$
\frac{2}{8}<\frac{6}{16}
$$

$$
\begin{aligned}
& \frac{5}{12}, \frac{2}{3}, \frac{5}{6} \\
& \frac{5}{12}, \frac{8}{12}, \frac{10}{12}
\end{aligned}
$$

Use common factors to simplify fractions; use common multiples to express fractions in the same denomination.

Concrete

ing the answer in its simplest form.

Pictorial
$\frac{1}{2}$ of $\frac{3}{4}$

Pictorial

Abstract \dagger

$$
\frac{18}{36}=\frac{6}{12}=\frac{1}{2}
$$

pairs of
tions, writ-

Concrete
$\frac{1}{2}$ of $\frac{3}{4}$

Maths Calculation Policy 2023-2024
Recall and use equivalences between simple fractions, decimals and percentages including in different contexts.

Concrete

Pictorial
Which would you prefer 75% or $\frac{3}{8}$ of a pie?

75\%

$\frac{3}{8}$ fractions
proper

Divide

Abstract
r

Concrete

Pictorial

$$
\frac{1}{2} \div 3=\frac{1}{6}
$$

Abstract

$$
\frac{1}{2} \div 3=\frac{1}{6}
$$

Keep it, change it, flip it!

$$
\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}
$$

Associate fractions with division and calculate decimal fraction equivalents.

Concrete

quarters

Pictorial
3 slices of pie 'out of' 8

$\frac{3}{8}$

Abstract

$$
\frac{3}{8}
$$

3 'out of' 8 is the same as 3 'divided by' 8

$$
3 \div 8=0.375
$$

$$
\text { So } \frac{3}{8}=0.375
$$

